3.485 \(\int (a^2+x^2)^{3/2} \sqrt{\sinh ^{-1}(\frac{x}{a})} \, dx\)

Optimal. Leaf size=309 \[ \frac{\sqrt{\pi } a^3 \sqrt{a^2+x^2} \text{Erf}\left (2 \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{256 \sqrt{\frac{x^2}{a^2}+1}}+\frac{\sqrt{\frac{\pi }{2}} a^3 \sqrt{a^2+x^2} \text{Erf}\left (\sqrt{2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{16 \sqrt{\frac{x^2}{a^2}+1}}-\frac{\sqrt{\pi } a^3 \sqrt{a^2+x^2} \text{Erfi}\left (2 \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{256 \sqrt{\frac{x^2}{a^2}+1}}-\frac{\sqrt{\frac{\pi }{2}} a^3 \sqrt{a^2+x^2} \text{Erfi}\left (\sqrt{2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{16 \sqrt{\frac{x^2}{a^2}+1}}+\frac{a^3 \sqrt{a^2+x^2} \sinh ^{-1}\left (\frac{x}{a}\right )^{3/2}}{4 \sqrt{\frac{x^2}{a^2}+1}}+\frac{3}{8} a^2 x \sqrt{a^2+x^2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{1}{4} x \left (a^2+x^2\right )^{3/2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )} \]

[Out]

(3*a^2*x*Sqrt[a^2 + x^2]*Sqrt[ArcSinh[x/a]])/8 + (x*(a^2 + x^2)^(3/2)*Sqrt[ArcSinh[x/a]])/4 + (a^3*Sqrt[a^2 +
x^2]*ArcSinh[x/a]^(3/2))/(4*Sqrt[1 + x^2/a^2]) + (a^3*Sqrt[Pi]*Sqrt[a^2 + x^2]*Erf[2*Sqrt[ArcSinh[x/a]]])/(256
*Sqrt[1 + x^2/a^2]) + (a^3*Sqrt[Pi/2]*Sqrt[a^2 + x^2]*Erf[Sqrt[2]*Sqrt[ArcSinh[x/a]]])/(16*Sqrt[1 + x^2/a^2])
- (a^3*Sqrt[Pi]*Sqrt[a^2 + x^2]*Erfi[2*Sqrt[ArcSinh[x/a]]])/(256*Sqrt[1 + x^2/a^2]) - (a^3*Sqrt[Pi/2]*Sqrt[a^2
 + x^2]*Erfi[Sqrt[2]*Sqrt[ArcSinh[x/a]]])/(16*Sqrt[1 + x^2/a^2])

________________________________________________________________________________________

Rubi [A]  time = 0.360075, antiderivative size = 309, normalized size of antiderivative = 1., number of steps used = 24, number of rules used = 11, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {5684, 5682, 5675, 5669, 5448, 12, 3308, 2180, 2204, 2205, 5779} \[ \frac{\sqrt{\pi } a^3 \sqrt{a^2+x^2} \text{Erf}\left (2 \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{256 \sqrt{\frac{x^2}{a^2}+1}}+\frac{\sqrt{\frac{\pi }{2}} a^3 \sqrt{a^2+x^2} \text{Erf}\left (\sqrt{2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{16 \sqrt{\frac{x^2}{a^2}+1}}-\frac{\sqrt{\pi } a^3 \sqrt{a^2+x^2} \text{Erfi}\left (2 \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{256 \sqrt{\frac{x^2}{a^2}+1}}-\frac{\sqrt{\frac{\pi }{2}} a^3 \sqrt{a^2+x^2} \text{Erfi}\left (\sqrt{2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{16 \sqrt{\frac{x^2}{a^2}+1}}+\frac{a^3 \sqrt{a^2+x^2} \sinh ^{-1}\left (\frac{x}{a}\right )^{3/2}}{4 \sqrt{\frac{x^2}{a^2}+1}}+\frac{3}{8} a^2 x \sqrt{a^2+x^2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{1}{4} x \left (a^2+x^2\right )^{3/2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )} \]

Antiderivative was successfully verified.

[In]

Int[(a^2 + x^2)^(3/2)*Sqrt[ArcSinh[x/a]],x]

[Out]

(3*a^2*x*Sqrt[a^2 + x^2]*Sqrt[ArcSinh[x/a]])/8 + (x*(a^2 + x^2)^(3/2)*Sqrt[ArcSinh[x/a]])/4 + (a^3*Sqrt[a^2 +
x^2]*ArcSinh[x/a]^(3/2))/(4*Sqrt[1 + x^2/a^2]) + (a^3*Sqrt[Pi]*Sqrt[a^2 + x^2]*Erf[2*Sqrt[ArcSinh[x/a]]])/(256
*Sqrt[1 + x^2/a^2]) + (a^3*Sqrt[Pi/2]*Sqrt[a^2 + x^2]*Erf[Sqrt[2]*Sqrt[ArcSinh[x/a]]])/(16*Sqrt[1 + x^2/a^2])
- (a^3*Sqrt[Pi]*Sqrt[a^2 + x^2]*Erfi[2*Sqrt[ArcSinh[x/a]]])/(256*Sqrt[1 + x^2/a^2]) - (a^3*Sqrt[Pi/2]*Sqrt[a^2
 + x^2]*Erfi[Sqrt[2]*Sqrt[ArcSinh[x/a]]])/(16*Sqrt[1 + x^2/a^2])

Rule 5684

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(x*(d + e*x^2)^p*
(a + b*ArcSinh[c*x])^n)/(2*p + 1), x] + (Dist[(2*d*p)/(2*p + 1), Int[(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^
n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/((2*p + 1)*(1 + c^2*x^2)^FracPart[p]), Int[x*(1
+ c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && Gt
Q[n, 0] && GtQ[p, 0]

Rule 5682

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(x*Sqrt[d + e*x^2]*
(a + b*ArcSinh[c*x])^n)/2, x] + (Dist[Sqrt[d + e*x^2]/(2*Sqrt[1 + c^2*x^2]), Int[(a + b*ArcSinh[c*x])^n/Sqrt[1
 + c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(2*Sqrt[1 + c^2*x^2]), Int[x*(a + b*ArcSinh[c*x])^(n - 1),
x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0]

Rule 5675

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSinh[c*x]
)^(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && NeQ[n, -1
]

Rule 5669

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Sinh[x]^m*Cosh[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rubi steps

\begin{align*} \int \left (a^2+x^2\right )^{3/2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )} \, dx &=\frac{1}{4} x \left (a^2+x^2\right )^{3/2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{1}{4} \left (3 a^2\right ) \int \sqrt{a^2+x^2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )} \, dx-\frac{\left (a \sqrt{a^2+x^2}\right ) \int \frac{x \left (1+\frac{x^2}{a^2}\right )}{\sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}} \, dx}{8 \sqrt{1+\frac{x^2}{a^2}}}\\ &=\frac{3}{8} a^2 x \sqrt{a^2+x^2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{1}{4} x \left (a^2+x^2\right )^{3/2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}-\frac{\left (3 a \sqrt{a^2+x^2}\right ) \int \frac{x}{\sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}} \, dx}{16 \sqrt{1+\frac{x^2}{a^2}}}+\frac{\left (3 a^2 \sqrt{a^2+x^2}\right ) \int \frac{\sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}}{\sqrt{1+\frac{x^2}{a^2}}} \, dx}{8 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \frac{\cosh ^3(x) \sinh (x)}{\sqrt{x}} \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{8 \sqrt{1+\frac{x^2}{a^2}}}\\ &=\frac{3}{8} a^2 x \sqrt{a^2+x^2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{1}{4} x \left (a^2+x^2\right )^{3/2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{a^3 \sqrt{a^2+x^2} \sinh ^{-1}\left (\frac{x}{a}\right )^{3/2}}{4 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \left (\frac{\sinh (2 x)}{4 \sqrt{x}}+\frac{\sinh (4 x)}{8 \sqrt{x}}\right ) \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{8 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (3 a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \frac{\cosh (x) \sinh (x)}{\sqrt{x}} \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{16 \sqrt{1+\frac{x^2}{a^2}}}\\ &=\frac{3}{8} a^2 x \sqrt{a^2+x^2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{1}{4} x \left (a^2+x^2\right )^{3/2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{a^3 \sqrt{a^2+x^2} \sinh ^{-1}\left (\frac{x}{a}\right )^{3/2}}{4 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \frac{\sinh (4 x)}{\sqrt{x}} \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{64 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{\sqrt{x}} \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{32 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (3 a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{2 \sqrt{x}} \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{16 \sqrt{1+\frac{x^2}{a^2}}}\\ &=\frac{3}{8} a^2 x \sqrt{a^2+x^2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{1}{4} x \left (a^2+x^2\right )^{3/2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{a^3 \sqrt{a^2+x^2} \sinh ^{-1}\left (\frac{x}{a}\right )^{3/2}}{4 \sqrt{1+\frac{x^2}{a^2}}}+\frac{\left (a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \frac{e^{-4 x}}{\sqrt{x}} \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{128 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \frac{e^{4 x}}{\sqrt{x}} \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{128 \sqrt{1+\frac{x^2}{a^2}}}+\frac{\left (a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \frac{e^{-2 x}}{\sqrt{x}} \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{64 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \frac{e^{2 x}}{\sqrt{x}} \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{64 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (3 a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{\sqrt{x}} \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{32 \sqrt{1+\frac{x^2}{a^2}}}\\ &=\frac{3}{8} a^2 x \sqrt{a^2+x^2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{1}{4} x \left (a^2+x^2\right )^{3/2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{a^3 \sqrt{a^2+x^2} \sinh ^{-1}\left (\frac{x}{a}\right )^{3/2}}{4 \sqrt{1+\frac{x^2}{a^2}}}+\frac{\left (a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int e^{-4 x^2} \, dx,x,\sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{64 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int e^{4 x^2} \, dx,x,\sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{64 \sqrt{1+\frac{x^2}{a^2}}}+\frac{\left (a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int e^{-2 x^2} \, dx,x,\sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{32 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int e^{2 x^2} \, dx,x,\sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{32 \sqrt{1+\frac{x^2}{a^2}}}+\frac{\left (3 a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \frac{e^{-2 x}}{\sqrt{x}} \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{64 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (3 a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int \frac{e^{2 x}}{\sqrt{x}} \, dx,x,\sinh ^{-1}\left (\frac{x}{a}\right )\right )}{64 \sqrt{1+\frac{x^2}{a^2}}}\\ &=\frac{3}{8} a^2 x \sqrt{a^2+x^2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{1}{4} x \left (a^2+x^2\right )^{3/2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{a^3 \sqrt{a^2+x^2} \sinh ^{-1}\left (\frac{x}{a}\right )^{3/2}}{4 \sqrt{1+\frac{x^2}{a^2}}}+\frac{a^3 \sqrt{\pi } \sqrt{a^2+x^2} \text{erf}\left (2 \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{256 \sqrt{1+\frac{x^2}{a^2}}}+\frac{a^3 \sqrt{\frac{\pi }{2}} \sqrt{a^2+x^2} \text{erf}\left (\sqrt{2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{64 \sqrt{1+\frac{x^2}{a^2}}}-\frac{a^3 \sqrt{\pi } \sqrt{a^2+x^2} \text{erfi}\left (2 \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{256 \sqrt{1+\frac{x^2}{a^2}}}-\frac{a^3 \sqrt{\frac{\pi }{2}} \sqrt{a^2+x^2} \text{erfi}\left (\sqrt{2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{64 \sqrt{1+\frac{x^2}{a^2}}}+\frac{\left (3 a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int e^{-2 x^2} \, dx,x,\sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{32 \sqrt{1+\frac{x^2}{a^2}}}-\frac{\left (3 a^3 \sqrt{a^2+x^2}\right ) \operatorname{Subst}\left (\int e^{2 x^2} \, dx,x,\sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{32 \sqrt{1+\frac{x^2}{a^2}}}\\ &=\frac{3}{8} a^2 x \sqrt{a^2+x^2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{1}{4} x \left (a^2+x^2\right )^{3/2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}+\frac{a^3 \sqrt{a^2+x^2} \sinh ^{-1}\left (\frac{x}{a}\right )^{3/2}}{4 \sqrt{1+\frac{x^2}{a^2}}}+\frac{a^3 \sqrt{\pi } \sqrt{a^2+x^2} \text{erf}\left (2 \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{256 \sqrt{1+\frac{x^2}{a^2}}}+\frac{a^3 \sqrt{\frac{\pi }{2}} \sqrt{a^2+x^2} \text{erf}\left (\sqrt{2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{16 \sqrt{1+\frac{x^2}{a^2}}}-\frac{a^3 \sqrt{\pi } \sqrt{a^2+x^2} \text{erfi}\left (2 \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{256 \sqrt{1+\frac{x^2}{a^2}}}-\frac{a^3 \sqrt{\frac{\pi }{2}} \sqrt{a^2+x^2} \text{erfi}\left (\sqrt{2} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}\right )}{16 \sqrt{1+\frac{x^2}{a^2}}}\\ \end{align*}

Mathematica [A]  time = 0.174533, size = 156, normalized size = 0.5 \[ \frac{a^3 \sqrt{a^2+x^2} \left (-\sqrt{-\sinh ^{-1}\left (\frac{x}{a}\right )} \text{Gamma}\left (\frac{3}{2},-4 \sinh ^{-1}\left (\frac{x}{a}\right )\right )-8 \sqrt{2} \sqrt{-\sinh ^{-1}\left (\frac{x}{a}\right )} \text{Gamma}\left (\frac{3}{2},-2 \sinh ^{-1}\left (\frac{x}{a}\right )\right )+\sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )} \left (-8 \sqrt{2} \text{Gamma}\left (\frac{3}{2},2 \sinh ^{-1}\left (\frac{x}{a}\right )\right )-\text{Gamma}\left (\frac{3}{2},4 \sinh ^{-1}\left (\frac{x}{a}\right )\right )+32 \sinh ^{-1}\left (\frac{x}{a}\right )^{3/2}\right )\right )}{128 \sqrt{\frac{x^2}{a^2}+1} \sqrt{\sinh ^{-1}\left (\frac{x}{a}\right )}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a^2 + x^2)^(3/2)*Sqrt[ArcSinh[x/a]],x]

[Out]

(a^3*Sqrt[a^2 + x^2]*(-(Sqrt[-ArcSinh[x/a]]*Gamma[3/2, -4*ArcSinh[x/a]]) - 8*Sqrt[2]*Sqrt[-ArcSinh[x/a]]*Gamma
[3/2, -2*ArcSinh[x/a]] + Sqrt[ArcSinh[x/a]]*(32*ArcSinh[x/a]^(3/2) - 8*Sqrt[2]*Gamma[3/2, 2*ArcSinh[x/a]] - Ga
mma[3/2, 4*ArcSinh[x/a]])))/(128*Sqrt[1 + x^2/a^2]*Sqrt[ArcSinh[x/a]])

________________________________________________________________________________________

Maple [F]  time = 0.198, size = 0, normalized size = 0. \begin{align*} \int \left ({a}^{2}+{x}^{2} \right ) ^{{\frac{3}{2}}}\sqrt{{\it Arcsinh} \left ({\frac{x}{a}} \right ) }\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2+x^2)^(3/2)*arcsinh(x/a)^(1/2),x)

[Out]

int((a^2+x^2)^(3/2)*arcsinh(x/a)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a^{2} + x^{2}\right )}^{\frac{3}{2}} \sqrt{\operatorname{arsinh}\left (\frac{x}{a}\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2+x^2)^(3/2)*arcsinh(x/a)^(1/2),x, algorithm="maxima")

[Out]

integrate((a^2 + x^2)^(3/2)*sqrt(arcsinh(x/a)), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2+x^2)^(3/2)*arcsinh(x/a)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a**2+x**2)**(3/2)*asinh(x/a)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a^{2} + x^{2}\right )}^{\frac{3}{2}} \sqrt{\operatorname{arsinh}\left (\frac{x}{a}\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2+x^2)^(3/2)*arcsinh(x/a)^(1/2),x, algorithm="giac")

[Out]

integrate((a^2 + x^2)^(3/2)*sqrt(arcsinh(x/a)), x)